

# Fusing The Information From Two Navigation Systems Using An Upper Bound On Their Maximum Spatial Separation

Isaac Skog, John-Olof Nilsson, Dave Zachariah, and Peter Händel

Signal Processing Lab, ACCESS Linnaeus Centre, KTH Royal Institute of Technology, Stockholm, Sweden



## Background

Currently, there is no navigation technology that, on its own, can provide a reliable, robust, and infrastructure-free solution to the problem of positioning a pedestrian in all kinds of indoor environments.





## Problem description

- Navigation technologies with complementary properties have different "optimal" positions on the body.
- The different systems tracks the states of different points on the body.
- There is a non-rigid realtionship between the navigation points.
- There is an upper limit  $\gamma$  how spatially separated the systems can be.



## Mathematical problem formulation

Let

 $\mathbf{x}_k^{(i)} \in \mathcal{R}^{n_i}$  be the true state of the *i* navigation system, with the first *s* elements representing the position,

$$\mathbf{x}_k = [(\mathbf{x}_k^{(1)})^T (\mathbf{x}_k^{(2)})^T]^T \in \mathcal{R}^{n_1 + n_2}$$
 the true joint navigation state.

Then, if their is a upper bound  $\gamma$  on the spatial separation,

$$\|\mathbf{L}\mathbf{x}_k\|^2 \le \gamma^2 \ \forall k$$
, where  $\mathbf{L} = [\mathbf{I}_s \ \mathbf{0}_{s,n_1-s} \ -\mathbf{I}_s \ \mathbf{0}_{s,n_2-s}]$ 

Hence, we would like the (joint) estimate  $\hat{\mathbf{x}}_k$  to also fulfill this constraint.

$$\widehat{\mathbf{x}}_{k}^{(1)} = \widehat{\mathbf{x}}_{k}^{(1)} \\ \widehat{\mathbf{x}}_{k}^{(2)} = \widehat{\mathbf{x}}_{k}^{(2)} = \widehat{\mathbf{x}}_{k}^{(2)} \\ \widehat{\mathbf{x}}_{k}^{(2)} = \widehat{\mathbf{x}}_{k}^{(2)} = \widehat{\mathbf{x}}_{k}^{(2)} = \widehat{\mathbf{$$



## Propossed solution

If  $\|\mathbf{L} \, \widehat{\mathbf{x}}_k\|^2 > \gamma^2$  project onto the subspace  $\{\mathbf{x} \in \mathcal{R}^{n_1 + n_2} : \|\mathbf{L}\mathbf{x}\|^2 \le \gamma^2\}$ .

One such projection is

$$p(\widehat{\mathbf{x}}_k) \stackrel{\text{def}}{=} \operatorname{argmin}\left(\|\widehat{\mathbf{x}}_k - \mathbf{x}\|_{\mathbf{P}_k^{-1}}^2\right) \quad \text{s.t.} \quad \|\mathbf{L}\,\mathbf{x}\|^2 \le \gamma^2,$$

where

$$\|\widehat{\mathbf{x}}_k - \mathbf{x}\|_{\mathbf{P}_k^{-1}}^2 = (\widehat{\mathbf{x}}_k - \mathbf{x})^T \mathbf{P}_k^{-1} (\widehat{\mathbf{x}}_k - \mathbf{x}),$$

and  $\mathbf{P}_k$  is the covariance matrix of the joint navigation solution  $\hat{\mathbf{x}}_k$ .

The projection is the solution to an inequality constraint weighted least squares problem.

## Solving the constraint LS problem (1)

The solution is a stationary point of the Lagrange function

$$J(\mathbf{x}, \lambda) \stackrel{\text{def}}{=} \|\widehat{\mathbf{x}}_k - \mathbf{x}\|_{\mathbf{P}_k^{-1}}^2 + \lambda \, \psi(\mathbf{x}),$$

where

$$\psi(\mathbf{x}) \stackrel{\text{def}}{=} \|\mathbf{L}\,\mathbf{x}\|^2 - \gamma^2.$$

The stationary points are given by the solutions to the normal equations

$$\frac{\partial J(\mathbf{x}, \lambda)}{\partial \mathbf{x}} = \mathbf{0} \quad \leftrightarrow \quad (\mathbf{P}_k^{-1} + \lambda \mathbf{L}^T \mathbf{L}) \mathbf{x} = \mathbf{P}_k^{-1} \widehat{\mathbf{x}}_k$$
$$\frac{\partial J(\mathbf{x}, \lambda)}{\partial \lambda} = 0 \quad \leftrightarrow \quad \psi(\mathbf{x}) = 0.$$

## Solving the constraint LS problem (2)

If there is a exist an unique solution to the LS problem, then the stationary point  $\{\lambda^*, \mathbf{x}^*\}$  of the Lagrange function that corresponds to the solution to the constrained least squares problem, is the unique stationary point for which  $\lambda > 0$ . That is

$$\lambda^* = \{\lambda \in \mathcal{R}^+ : \| \left( \mathbf{P}_k^{-1} + \lambda \mathbf{L}^T \mathbf{L} \right)^{-1} \mathbf{P}_k^{-1} \widehat{\mathbf{x}}_k \|^2 - \lambda^2 = 0 \}.$$

This is a nonlinear polynomial function in  $\lambda$ , and to find its roots, one must in most cases resort to some numerical method such as Newtons method.

Given  $\lambda^*$ , then the projected state estimate  $\widehat{\mathbf{x}}_k^* = (\mathbf{P}_k^{-1} + \lambda^* \mathbf{L}^T \mathbf{L})^{-1} \mathbf{P}_k^{-1} \widehat{\mathbf{x}}_k$ 



# Approximating the covariance of the constraint estimate

The covariance  $\mathbf{P}_k^*$  of the projected joint navigation solution  $\widehat{\mathbf{x}}_k^*$  can be approximated as

$$\mathbf{P}_k^* = \nabla p \, \mathbf{P}_k (\nabla p)^T,$$

where  $\nabla p$  is the Jacobian matrix of the projection function  $p(\mathbf{x})$ .

That is

$$\nabla p = \left(\mathbf{I}_m - \frac{(\mathbf{P}_k^{-1} + \lambda^* \mathbf{L}^T \mathbf{L})^{-1} \mathbf{z}_k \mathbf{z}_k^T}{\mathbf{z}_k^T (\mathbf{P}_k^{-1} + \lambda^* \mathbf{L}^T \mathbf{L})^{-1} \mathbf{z}_k}\right) (\mathbf{P}_k^{-1} + \lambda^* \mathbf{L}^T \mathbf{L})^{-1} \mathbf{P}_k^{-1}$$

where  $\mathbf{z}_k = \mathbf{L}^T \mathbf{L} \, p(\widehat{\mathbf{x}}_k)$ 



## Summary of the propossed method

- 1. Construct the joint state vector  $\hat{\mathbf{x}}_k$  and joint covariance matrix  $\mathbf{P}_k$  from the navigation solutions of the two subnavigation systems.
- 2. Enforce the constraint by projecting the joint navigation solution onto the feasaible subspace. That is
  - (a) Set up the Lagrange cost function for the IWLS problem.
  - (b) Solve the corresponding normal equations for the unique positive Lagrange multiplier  $\lambda^*$ .
  - (c) Calculate the solution  $\hat{\mathbf{x}}_k^*$  to the IWLS problem.
- 3. Calculate the covaraince  $\mathbf{P}_k^*$  of the constraint joint navigation solution.

Note:  $\hat{\mathbf{x}}_k^*$  and  $\mathbf{P}_k^*$  are a quite crude approximation of the first and second order moment of the projected navigation solution and should be used with care.

# Handling navigation systems with attitude estimates

#### Problem:

The method proposed assumed that  $\mathbf{x}_i \in \mathcal{R}^{n_i}$ . The attitude states are defined on  $[0, 2\pi)$  and a sequency of rotations does not commute  $\to$  the attitude cannot be represented by a "proper" vector

#### Solution:

$$\begin{bmatrix} \widehat{\mathbf{p}}_{k}^{(1)} \\ \widehat{\mathbf{v}}_{k}^{(1)} \\ \widehat{\boldsymbol{\psi}}_{k}^{(1)} \\ \widehat{\mathbf{p}}_{k}^{(2)} \\ \widehat{\boldsymbol{\psi}}_{k}^{(2)} \\ \widehat{\boldsymbol{\psi}}_{k}^{(2)} \end{bmatrix} \xrightarrow{(1)} \begin{bmatrix} \widehat{\mathbf{p}}_{k}^{(1)} \\ \widehat{\mathbf{v}}_{k}^{(1)} \\ \mathbf{0} \\ \widehat{\mathbf{p}}_{k}^{(2)} \\ \widehat{\mathbf{v}}_{k}^{(2)} \\ \mathbf{0} \end{bmatrix} \xrightarrow{(2)} \mathbf{Proj.} \xrightarrow{(3)} \begin{bmatrix} \widehat{\mathbf{p}}_{k}^{(1),*} \\ \widehat{\mathbf{v}}_{k}^{(1),*} \\ \widehat{\mathbf{v}}_{k}^{(2),*} \\ \widehat{\mathbf{p}}_{k}^{(2),*} \\ \widehat{\mathbf{v}}_{k}^{(2),*} \\ \widehat{\mathbf{v}}_{k}^{(2),*} \end{bmatrix} \xrightarrow{(4)} \widehat{\boldsymbol{\psi}}_{k}^{i,*} = \Upsilon(\widehat{\boldsymbol{\psi}}_{k}^{i}, \epsilon_{k}^{i}) \xrightarrow{(5)} \begin{bmatrix} \widehat{\mathbf{p}}_{k}^{(1),*} \\ \widehat{\mathbf{v}}_{k}^{(1),*} \\ \widehat{\mathbf{v}}_{k}^{(2),*} \\ \widehat{\mathbf{v}}_{k}^{(2),*} \\ \widehat{\boldsymbol{\psi}}_{k}^{(2),*} \end{bmatrix}$$



## Experiment

- A user was equipped two OpenShoe navigation system and asked to walk along a strait line for 110 m
- As reference points plates with imprints of the shoes were positioned at 0[m], 10[m], and 110[m].
- Twenty trajectories with 4 different OpenShoe units were collected.
- The data was the processed with the proposed method.







The OpenShoe navigation system



## Results



Reproducible Research: The data and Matlab code used in this paper are available at www.openshoe.org.



### Conclusions

- A method to fuse the navigation solution from two navigation system, when there is an upper limit on their maximum spatial seperation has been proposed.
- The proposed method has been applied to two foot-mounted zero-velocity aided INS, and tested using real world data.
- The results indicates that the method can reduce final position error significantly

#### **Bonus:**

- You may try the OpenShoe system with the propossed method at demo session.
- A more statistically correct method can be found in:

Zachariah, D.; Skog, I.; Jansson, M.; Händel, P.; , "Bayesian Estimation With Distance Bounds," Signal Processing Letters, IEEE, vol.19, no.12, pp.880-883, Dec. 2012



## Appling the method to two footmounted zero-velocity aided INSs





### Pseudo code

**Algorithm 1** Pseudo code for the proposed Kalman filter algorithm.

```
1: k \leftarrow 0, c_{\mathbf{Z}} \leftarrow -\tau_{\mathbf{Z}}
  2: \widehat{\mathbf{x}}_k \leftarrow \mathbf{Process}\{ Joint initial navigation state \}
  3: P_k \leftarrow Process\{ Initial covariance matrix \}
  4: loop
6: [\widehat{\mathbf{x}}_{k}]_{1:9} \leftarrow f([\widehat{\mathbf{x}}_{k-1}]_{1:9}, \widetilde{\mathbf{s}}_{k}^{(1)}, \widetilde{\omega}_{k}^{(1)})
7: [\widehat{\mathbf{x}}_{k}]_{10:18} \leftarrow f([\widehat{\mathbf{x}}_{k-1}]_{10:18}, \widetilde{\mathbf{s}}_{k}^{(2)}, \widetilde{\omega}_{k}^{(2)})
8: \mathbf{P}_{k} \leftarrow \mathbf{F}_{k} \mathbf{P}_{k-1} \mathbf{F}_{k}^{T} + \mathbf{G}_{k} \mathbf{Q} \mathbf{G}_{k}^{T}
 9: T_k^{(1)} \leftarrow \mathbf{Process}\{ \text{Zero-velocity detector for system #1 } \}
10: T_k^{(2)} \leftarrow \mathbf{Process}\{ \text{Zero-velocity detector for system #2 } \}
                  if T_k^{(1)} \le \eta^{(1)} or T_k^{(2)} \le \eta^{(2)} then
                   \mathbf{K}_{k}^{\kappa} \leftarrow \mathbf{P}_{k} \mathbf{H}_{k}^{T} (\mathbf{H}_{k} \mathbf{P}_{k} \mathbf{H}_{k}^{T} + \mathbf{R}_{k})^{-1}
                        \delta \widehat{\mathbf{x}}_k \leftarrow -\mathbf{K}_k \, \mathbf{H}_k \, \widehat{\mathbf{x}}_k
                    [\widehat{\mathbf{x}}_k]_{1:9} \leftarrow \Gamma([\widehat{\mathbf{x}}_k]_{1:9}, [\delta \widehat{\mathbf{x}}_k]_{1:9})
                    [\widehat{\mathbf{x}}_k]_{10:18} \leftarrow \Gamma([\widehat{\mathbf{x}}_k]_{10:18}, [\delta \widehat{\mathbf{x}}_k]_{10:18})
                         \mathbf{P}_k \leftarrow (\mathbf{I}_{18} - \mathbf{K}_k \mathbf{H}_k) \, \mathbf{P}_k
                          if \|\mathbf{L}\widehat{\mathbf{x}}_k\|^2 > \gamma^2 and k - c_{\mathbf{Z}} > \tau_{\mathbf{Z}} then
                       \widehat{\mathbf{x}}_k \leftarrow p(\widehat{\mathbf{x}}_k)
                       \mathbf{P}_k \leftarrow \nabla p \, \mathbf{P}_k (\nabla p)^T
                        c_{\mathbf{Z}} \leftarrow k
20:
                          end if
21:
                  end if
23: end loop
```

#### Notation

| $(\cdot)^{(i)}$       | Superscript indicating a quantity related to subsystem $i$            |
|-----------------------|-----------------------------------------------------------------------|
| k                     | Time index                                                            |
| $	au_z$               | Value controlling the rate at which the constraint is applied         |
| $[\mathbf{a}]_{i:j}$  | Element $i$ to $j$ of vector $\mathbf{a}$                             |
| $\delta {f a}$        | Perturbation of vector <b>a</b>                                       |
| $f(\cdot)$            | Navigation equations                                                  |
| $\Gamma(\cdot)$       | Function that given the state perturbations corrects the state vector |
| $p(\cdot)$            | Projection operator                                                   |
| $\nabla p$            | Gradient of the projection operator                                   |
| T                     | Detector test statistics                                              |
| $\eta$                | Detector threshold                                                    |
| $\gamma$              | Range constraint                                                      |
| $	ilde{\mathbf{s}}_k$ | Specific force measurement                                            |
| $	ilde{\omega}_k$     | Angular rate measurement                                              |
| $\mathbf{I}$          | Identity matrix                                                       |
| $\mathbf{F}_k$        | Joint state transition matrix                                         |
| $\mathbf{H}_k$        | Joint measurement matrix                                              |
| $\mathbf{G}_k$        | Joint process noise gain matrix                                       |
| $\mathbf{Q}_k$        | Joint process noise covariance matrix                                 |
| ${\bf R}_k$           | Joint measurement noise covariance matrix                             |
| $\mathbf{P}_k$        | Joint state covariance matrix                                         |

Supergript indicating a quantity related to subsystem i