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Abstract—Due to the recursive and integrative nature of zero-

velocity-update-aided (ZUPT-aided) inertial navigation systems Tracked steps
(INSs), the error covariance increases throughout each ZUR

less period followed by a drastic decrease and large statetesate
corrections as soon as ZUPTs are applied. For dead-reckorgn
with foot-mounted inertial sensors, this gives undesirald dis-
continuities in the estimated trajectory at the end of each tp.
However, for many applications, some degree of lag can be
tolerated and the information provided by the ZUPTs at the erd
of a step can be made available throughout the step, eliminiiy
the discontinuities. For this purpose, we propose a smoothg
algorithm for ZUPT-aided INSs. For near real-time applications,
smoothing is applied to the data in a step-wise manner requing

a suggested varying-lag segmentation rule. For complete fof N, e
line processing, full data set smoothing is examined. Finig position y[m] Yo position z[m]
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the consequences and impact of smoothing are analyzed and
quantified based on real-data. Fig. 1: Steps from a straight-line trajectory as tracked FUPT-
aided INS. Large corrections causing apparent discotig@sucan be
I. INTRODUCTION seen at the end of each step. Note the difference in scalesbrtw

Pedestrian dead-reckoning systems constructed aroutid f&ff Xy-plane and the z-axis.
mounted inertial measurement units (IMUs) have shown re-

markable tracking performance [1}-[6]. The potential &ppl The remainder of the article is structured as follows. In

cations range from blue-force tracking, ambient livingastn Section Il the underlaying ZUPT-aided INS is reviewed. In

ffi nd ambulator it analysis. Th navigation . . .
offices, and ambu atoy gait analysis ese na gato SXgectlon Il the smoothing problem is introduced and the gen-
tems are commonly implemented as zero-velocity-update-

; . ’ . L . eral smoothing formula is given. We argue that the costumar
aided (ZUPT-aided) inertial navigation systems (INSS)J@N ZUPT-aided II%S filtering cgnnot be ma?)ped to the smoothing

to their integrative and recursive nature, the error cevare . .
f%Hnula and revert to an open-loop implementation of the

increases throughout each step and “collapses” at the e : .
of the step when large corrections to the state estimates é?én €. Also since the measurements (the ZUPTS) are irreg-

applied. These large corrections complicate motion aiglys arly spaced and appear in clusters, a varying-lag smogthi

and can be distracting for visualization. The situation irSuIe is necessary and therefore introduced. By combinihg al

illustrated in Fig. 1 where multiple tracked steps are plott of th? different conS|dgred aspepts,_the prpposeq smagpthm
beside each other. See also Fig. 5-6 in the end of the article '90””‘”.‘ for a ZUPT-aided lNS. is given. Finally, in SeC“O‘?
illustration of the behavior of the covariances. Unfortiahg \(J,a;rt]i(feie:jm(?r??tea?f dg':g smoothing throughout the steps is
for applications with tight real-time constraints, thishagior q Reproducible reseérch A Matlab  implementation

is unavoidable, since every estimate corresponds to thie b0 thpe suagested smoothing  algorithm iz available at
estimate including all information up until that time insta 99 g a9

o www.openshoe.org
However, for many applications, some degree of lag (non-

causality) can be tolerated and the information providethley Il. ZUPT-AIDED INS
ZUPTs at the end of a step, causing the discontinuities, canconceptually, the ZUPT-aided INS consists of an inertial
be made available throughout the step. However, incoripgrat j,easurement unit (IMU), giving specific force and angulée ra

quently, to eliminate the discontinuities and unsymmatricgiate estimates. In the following subsections, the custpma
covariance over the steps, the implementation of a smathifitering implementation is reviewed.

filter for a ZUPT-aided INS is considered. To our knowledge, ) o

no treatment of smoothing for such systems has previoudly Inertial navigation

been presented, even though extensive literature existseon A foot-mounted IMU is most likely of strap-down type and
general subject. the IMU measurements need to be transformed from the sensor
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frame to thefixednavigation frame. Therefore, in the first placavhere T'(-) is some test statistic§w’, £}, is the inertial

the measurements taken by the gyroscope are integrated to firrasurements over some time windél,, and~ is some

the relative orientation from one frame to another. Thetreda threshold. See [7] for further details about zero-velociey

orientation is represented with quaterniojs and updated tection.

with When the system is stationary, the estimated velocity as of
([wi | T 9  (Nlwnll Ty (6) can be treated as a pseudo-measurement of the velocity

dn = {COS( )14 + ol Ts S1 ( 9 ) n:| dn—-1  estimation error. Together with a deviation model of (2)-(5

(1) 5%, = Foud 5
wherew,, = [w?,w¥,w?]T, T, is the sampling period of the Xn = ¥n0Xn—1+ Wn @)

n

systemn is a time indexw?, is the angular rate measurementvheredx,, is the deviation of the estimated navigation states

around thei axis, and form the true states, this can be used to estimate with a
. - Kalman type filter. This gives the so called INS aiding. For
0 wi  —wy wy ; . .
. - further details on this see [8]. Note that, as argued in [9],
T, | —w? 0 wE o wy ) cr: .
Q, =—— . - " (2) systematic sensor errors are difficult to model and estimate
2 wy  —wr 0 Wi ; :
or ¥ —wt 0 and therefore no such states are includedxnp.
" " " The final equations used by our ZUPT-aided INS are

is the quaternion update matrix. However, the orientatiqRiialization: %o ¢ E[xo], Py ¢ cOV(xo)
might be equivalently represented with the rotation matriéoop: n = 1to end of data
R, & q, or the Euler angle®,, < q,. For clarity, we ]
will use the different representation interchangeably. % Time update

Once the current orientation is known, the specific force | X, = fmech(Xn-1, fn,wn)
measured by the accelerometdrscan be expressed in the P, — FnPnlej,I; + GQGT
navigation frame. This allows a compensation to be made for

0
the gravitational acceleratiog = [0, 0,9.81]7 % Measurement update

if T({w', £'}w,) <
K, =P,H'(HP,H" + R)™!
which yields the acceleratios,, in the navigation coordinate 5%, = K, v, (8)

frame, o o P, « P,(I-K,H)
Finally, the inertial acceleratioa,, is integrated to get the :
% Compensate internal states

positionp,, and velocityv,,. Since the frequency is high and

an = Rnfb -8 (3)

the variables discrete, the acceleratmn can be considered Pn - Pn 4 ) o7
constant between two time samples and the basic equations of Vi Vi 0V,
motion are applied as mechanization equations R, + (I3 — AR,

1 N
Prn =Pn-1+ Vo115 + 5 anTSQ (4) 0Xp <0

whereP,, = cov(dx,,) is the error covariance matriXx is
Vyp = Vo1 +a,Ts. (5) " V( n) G

the process noise matriQ = cov(wy), H = [05I5 03] is the
Concatenating the position, velocity, and orientatiorreepn- observation matrixK is the Kalman gain, and
tation into a navigation state vectat, = (p,, vy, 6,) allow

8 - 0 —dxyaw 6Xpitch
us to describe equations (1)-(5) as a state space system A, = Sxcyaw 0" N 5’;(20”
Xn = fmech(Xn—h fm wn)- (6) 75X]7gzit6h 5X20” 0
Together with the IMU, this state space system makes up the! "€ @bove algorithm is of closed-loop complementary type
INS. where for each iteratiom, the estimated stat&,, is cor-
rected by the additional measurement (the ZUPT) through
B. ZUPT-aiding the estimated deviatiodx,. This is the customary way

Unfortunately, the errors of the state estimates as prapdga®f dead-reckoning with a ZUPT-aided INS. However, direct
by the INS increase rapidly with time. Therefore, additiondmplementation of a smoothing algorithm is not possible.
information is required for correcting the estimates. le thThe next section explains the motivation and introduces the
current scenario, pseudo-measurements in the form of zupTedifications done to the algorithm in order to achieve a
are used. The idea underlying the ZUPTs is to detect tRE0othed ZUPT-aided INS.
state when the shoe is stationary and, hence, its velocity is

: . . . [1l. SMOOTHING
supposedly zero. The system is considered stationary if

o The customary algorithm (8) gives the behavior illustrated
THw", ' Iw,) <7~ in Fig. 1. The problem is that the information provided by the
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ZUPTs is abruptly introduced at the end of the step. This can Cg%)r%t A
be mitigated by smoothing. Segment here
. —
A. General smoothing o f s e
The goal of a smoothing estimation process is to determine A
the estimated state vectsr, y, where a subscript|N is : T ;
used to denote the estimate of thth time instant given all ' ZUPTs  ZUPTs

information (in our case, the ZUPTs) up d where n < N.
This is the so calledmoothing problemWe have analyzed ) ) _
different algorithms englobed in thfixed-intervalsmoothing glgétzié;/l‘f;ov%%r?r{ﬁé %%’gr%ingé'ggﬁaesﬁzﬂg ?hztesggggfés
problem, Wh'Ch~a”PS t? CalCUIaté”W from a fixed set of a step, a no-ZUPT decision can be made. These erroneoustiedec
measurementdyo, y1...yn} for every n € {0,1,..,N}.  segments are short; the covariance increases but doeespass the
Fixed-interval smoothing problems have been the considerslected covariance threshold.
smoothing algorithms because the structure of the signal is
considered to fit well with this method. By dividing the sigina
in segments directly related to a step, the information jolexy B. D ;

- . Data segmentation
by the ZUPT at the end of the step giving the sharp correc- g

tions can be made available throughout the whole step via aThe aim of choosing a fixed-interval smoothing problem
smoothing algorithm. For many applications, some degree gfto jmplement a near to real-time smoothing algorithm by
lag (non-causality) can be tolerated such that smoothingea applying the smoothing in a step-wise manner. As pointed out
carried out step-by-step and, thus, a near real-time behavthe fixed-interval problem fits with the step by step struetur
of the smoothing is achieved. Among the different types @f the signal. However, some kind of segmentation rule that a
fixed-interval smoothing algorithms, the Rauch-Tungedtel |ows to create the data segments to be smoothed is still deede
(RTS) formula has been used, since it presents a straigince the measurements (the ZUPTs) are irregularly spaced
forward relationShip with the pl’eViOUS CUStomary ZUPTeald and appear in clusters, we propose a Varying_|ag Smoothing

Time

INS algorithm. The RTS formula is rule based on measurement availability and covariance and
LOOP: 1 = Send— 1 tO Sstart timing thresholds. Throughout a step, the velocity error co
A —p  TTp-! variance monotonically increases until the stationaryspha
" nntntntlin of the step is detected, when the error covariance drdstical
Xn|sena = Xnfn T An(Xnt1]seg — Xnt1jn) (9) decreases. However, the detection of the ZUPT intervalstis n
Pojss = Prin + An(P 15 — Pn+1|n)Af perfect and during the stance phase a no-ZUPT decision can

. . . . be made. Nevertheless, these determined no-ZUPT segments
wherex,,, is some arbitrary state vectdr,, is some related Tfﬁ

. . _ ring the steady phase of the step do not last for a long
system matrix, and the smoothing has been applied over fig, “soon a ZUPT is detected again and the covariance
interval [Send, Sstar] Where seng > sstar. The initial conditions de '

) . creases once more. Since these erroneously determined no
Xn|n @ndP,,,, are provided by the forward Kalman filter. y

: . UPT segments are short, the velocity error covarianceaann
The RTS formula (9) cannot be directly applied to the esZ— >¢d S S v Yy var

. . . .~ .~ increase as much as during the non-stationary phase of the
mation (8). This is because of the internal compensatioB)in g yp

changing the value of%,, preventing smoothing from being tep. Therefore, to properly segment a step, a sum of the
directly applied to it. This problem can be solved by SimplveIOC|ty error covariances threshojd to be crossed top-down

iding the int | i d instead i fixed to decide the segmentation, as shown in Fig.2. The
avoiding the internal compensation and instead propagy efnreshold must be high enough to not be affected by the error
open-loop. In this case the deviation state estimates nee

be propagated with cévariance increase during these erroneously decidetrsiror
ZUPT segments.
0Xpn-1=FnoXn_1jn1 Unfortunately, direct segmentation at the point where the
since they are no longer set to zero. By running the f"t(y,elocity error co_variance threshotg is trespassed Ieads toan
open-loop, the estimation formula can directly be applied tcorrect behavior of the smoothing algorithm. At this @pin

the deviation statesg,,_; the velocity error covariance has not converged yet andéhenc
the information provided by the ZUPT is not fully available
Loop: 7 = Send— 1 10 Sstart in the segment. Despite this, if the segmentation is apglied
A, = Pn|nFTP,,_LJ1an constant time after the crossing of this covariance thriesho
ey = 0%nm + A (6% = Rnsaln) t_he information given b_y the ZUPT is avallaple. Therefore, a
7 send nin AT L seng ntiin - time thresholdr, [s] is fixed. When the covariance threshold
Pofsens = Papn + An(Priijses = Prt1jn) Ay ~s is trespassed, the Kalman filter continues running normally

However, once the smoothing has been applied, nothing pfer the nextr, seconds, when the segment is cut. The proposed
vents the internal compensation from being implemented. segmentation rule is summarized in Fig. 2.
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C. Suggested 3-pass algorithm Algorithm 1 Pseudo code for the proposed 3-pass smoothing

Considering the specific features shown along this sectina}lj??”_thm'
the proposed smoothing algorithm is given in Alg. 1. Th#tializ.: %o = Efxo], 6% = 0, Py = var(xo),
algorithm is a 3-pass algorithm. On the 1st pass, it runs the 0» Sstat= 1, sena="end of data”
open-loop ZUPT-aided INS. The fo_rwarq run is temporarilxOop while Sstart < Send
suspended, by the data segmentation, giving a 2nd backwa
pass adding the smoothing. Finally, the algorithm perfoams
3rd forward pass in which the estimated deviations are used-00P: 7 = Sstart 10 Send
to correct the navigational states. The last pass continpes % Time update
to the point where the 1st forward pass stopped, where the 1st
pass forward continues again. The 3rd forward pass eftdgtiv
closes the loop and, therefore, the algorithm can be viewed a

r .
9/0 Forward Kalman filter

)A(n - fmecl{kn—la f'ru wn)

5Xn\n71 = Fn(sxnfl\nfl

mixed open-closed-loop filtering. P,n1=F,P,_ 1, 1F, + GQG"
It should be noted that compared to (8), the memory | % Measurement update
requirements increase, since for each segment stégnand it T({w', £ }w.) <

P is necessary for the smoothing. However, the covariang

9]

K, = Pn|n71HT(HPn|n71HT + R)_l

increases rather linearly and if memory is a concern, a subse
of the covariance value® could be stored and used to 0Rpjn = 0Xpjn—1 — Kn(0Vpjn—1 — Vn)
interpolate the rest on the backward pass. P, =P, (I-K,H)

IV. EXPERIMENTAL RESULTS % Segmentation rule eval.

We have compared the smoothing effect over two different | if ¢ >0
implementations of the smoothing algorithm. The first is 8 | | ¢ = ¢+ T,
segmentedsmoothed ZUPT-aided INS which corresponds tq | . : v , vel\|| < _
the formulas shown in Alg.1 withry = 0.04 [s.]; whereas it |diagP, )l > 5, A [ldiagPy 5l < 75 Ae=0

the second corresponds tcman-segmentedmoothed ZUPT- be=T;
aided INS which corresponds to the same formulas but without | if ¢ > 75
evaluating the segmentation rule;( = oc). Hence, the [Send<_ n
non-segmented smoothed ZUPT-aided INS corresponds to| a

smoothing of the whole data set (off-line processing of the break loop

data). Thus, consequences of near real-time processing ga¥ Smoothing
_be compared Wi'_th off-line processing of the data,_ where the| oop: n = seng— 1 10 Sstart
information provided by all of the future ZUPTs is known. A —Pp  FTp-!
All data has been collected with OpenShoe units [5]. " nin n+ln

The effect of the smoothing algorithm in an estimated | 0Xn|ses = 0Xnjn + An(0Xnt1]se0q — OXntijn)
trajectory is shown in Fig. 3. This figure shows the achieved Pjses = Popn + An(Priifse — an‘n)Ag
smoothing effect compared_wnh the estimated tr_aject(_)ry by% Internal state compensation
the customary (8). The estimated smoothed trajectories are
almost perfectly overlapping and the differences betwéen t | LOOP: 7 = sstart 1O Send
segmented and non-segmented implementations are snggall. Fi [ Pn } - [ Pn } " [ D] send ]
4 shows the result of the smoothing over multiple steps, for Vn Vi OV seng
the segmented ZUPT-aided INS implementation. The graph | g« (1, — Apjens) (R)
shows the aligned xy-evolution of 20 steps of a pedestrian
walking at 3.5 km/h. It can be seen how the sharp correction
from the customary ZUPT-aided INS are nearly negligible fot. Sstat= Send+ 1, send= “end of data’ ¢ = 0
the smoothed ZUPT-aided INS.

In the implementation some sharp corrections in the smooth-
ing have been experienced. These appear when there are large
accelerations and rotations and large cross-couplingsdeet  Fig. 5 shows the smoothing effect over the velocity error
heading and the position states. These problems are betlieeevariance. For (8), the error covariance increases along a
to be due to problems with the linearization in (7). They can tstep until the information provided by the ZUPT becomes
mitigated by zeroing out the cross-coupling between hepdiavailable, where the error covariance decreases drdgtical
and position states. However, in this case the covariarer the smoothed implementations, the information pravide
estimates in the filter will not be correct, even though thiey the future ZUPTs is also available. Therefore, the highes
state estimates do not change significantly. error covariance value is in the middle of the step, which is

0%, + 0
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Velocity error standard deviation

Estimated trajectory 002 T —
. . . . o018 std velocity x R
sl Non-smoothed ZUPT-aided INS)| Qoosr ——std veloc!ty y 1
Segmented smoothed Eooar std velocity z —
6 Non-segmented smoothed i gomz— il
Zuwn ]
[}
%0006 Bl
> 00 |
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N ) = time [s]
-8t 1 Fig. 5: Typical effect of smoothing over the velocity erravariance
_101 : | throughout two steps.
-12r . Position‘error standar‘d deviation ‘
- - - - - - ——std position x
-5 0 5 10 15 20 oo ——std positjon ¥ .
positionz[m] Tooul ——std position ]
Fig. 3: Effect of smoothing over a trajectory. The large eotions at Dot i

the end of each step have been smoothed. Note that the segimen < oof

and non-segmented smoothed trajectories are essentialilapping. § ]

Tracked steps

0012 i i i i

) is
time [s
——— Smoothed steps 8 zup[ré
. [
—— Causally estimated steps Sos {
g 0 0.5 1 . 15 2 25
time [s]

Fig. 6: Typical effect of smoothing over the position errovariance
throughout two steps.

position z[m]

V. CONCLUSION

In this article we have suggested an smoothing algorithm
for ZUPT-aided INSs, which has been shown to eliminate the
discontinuities at the end of each step. The proposed méthod
Fig. 4: Effect of smoothing over multiple steps. The largerections based on a 3-pass mixed open-closed-loop filter. Consegsenc
at the end of each step have been smoothed. Note the difeefencof smoothing have been illustrated, analyzed and quantified
scale between the xy-plane and the z-axis. over a test trajectory, over multiple steps and over thererro
covariance values.
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