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Abstract—A method is proposed to fuse the information from
two navigation systems whose relative position is unknown, but
where there exists an upper limit on how far apart the two
systems can be. The proposed information fusion method is
applied to a scenario in which a pedestrian is equipped with two
foot-mounted zero-velocity-aided inertial navigation systems; one
system on each foot. The performance of the method is studied
using experimental data. The results show that the method has
the capability to significantly improve the navigation performance
when compared to using two uncoupled foot-mounted systems.

Index Terms—Pedestrian navigation, Inertial navigation, Con-
straints, Zero-velocity detection.

I. INTRODUCTION

Currently, there is no navigation technology that, on its own,

can provide a reliable, robust, and infrastructure-free solution

to the problem of positioning a pedestrian in all kinds of

indoor environments. Only a navigation system that acts in

cooperation with a multitude of navigation technologies (i.e.,

sub-navigation systems) with complementary properties has

the potential to fully solve this pedestrian indoor navigation

problem [1]. Because navigation technologies with comple-

mentary properties are generally based upon different physical

phenomena, the most favorable location of the different sub

navigation systems on the body of the user also differs. For

example, a zero-velocity-aided inertial navigation system is

best mounted on the foot of its user, since it then becomes

stationary on a regular basis whenever the user walks; a

vision-aided inertial navigation system is best mounted on

the shoulder of the user, since it then has a clear view of

the environment in front of its user but is excited by smaller

angular rates than if it is mounted on the user’s head; and a

ultra-wide band transceiver is best mounted on the head of its

user because it is then least likely that other body parts will

block the radio signals.

If not all sub-navigation systems are located on the same

point of the user, they will track the position of different

points of the user’s body. Hence, there is a question of how to

combine these navigation solutions by means of the different

sub-navigation systems. Because the human body is non-rigid,

the relative positions of the subsystems are not fixed and one

cannot directly relate the navigation solution of one subsystem
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Fig. 1: Illustration of the possible placements of the subsystem in a
pedestrian navigation system and the maximum spatial separation γ

between the subsystems.

to another. However, as illustrated in Fig. 1, there is an upper

limit on how spatially separated the different subsystems can

be. In this paper, we will therefore propose a method for fusing

the information from two non-collocated navigation systems

when there exists an upper bound on how far apart the systems

can be.

The outline of the paper is a follows. In Section II, we

describe the problem of fusing the information from two nav-

igation systems using prior information about their maximum

separation in space, and we propose a method to solve it. In

Section III, we apply the proposed method to the problem

of fusing the navigation solutions of two foot-mounted zero-

velocity-aided inertial navigation systems. Then in Section IV,

we describe an experiment that we conducted to evaluate the

proposed method and present results. Finally, in Section V,

we draw conclusions.

Reproducible Research: The data and Matlab code used in

this paper are available at www.openshoe.org.

II. APPLYING AN INEQUALITY CONSTRAINT TO THE

NAVIGATION SOLUTION USING A PROJECTION

In this section, we will show how knowledge of the max-

imum distance between two navigation systems can be used
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to fuse the navigation information from the two systems.

A. Problem formulation

Consider a scenario where we have two navigation system,

and let x
(i)
k ∈ Rni , i = 1, 2., be the vector containing the true

state of the i:th navigation system at time instant k ∈ N+.

Further, assume that the s ∈ N+ first elements of the vector

x
(i)
k represents the position of the navigation system. Next,

define the joint state vector

xk
def
=
[ (

x
(1)
k

)T (
x
(2)
k

)T ]T
(1)

and the matrix

L
def
=
[
Is 03,n1

−Is 03,n2

]
. (2)

Here Iq and 0q,r denote a identity matrix of size q and a zero

matrix of size q times r, respectively. Moreover, (·)T denotes

the transpose operation. Now, if there is an upper bound γ on

how far separated the two navigation systems can be, it most

hold that ‖Lxk‖
2 ≤ γ2 ∀k. Hence, we would like the joint

navigation solution x̂k ∈ Rm (m = n1 + n2), defined as

x̂k
def
=
[ (

x̂
(1)
k

)T (
x̂
(2)
k

)T ]T
, (3)

to also fulfill this condition. Here and through out the paper the

circumflex diacritic ·̂ is used to indicate an estimate quantity.

One way of imposing the constraint to the joint navigation

solution is to, if ‖L x̂k‖
2 > γ2, project the joint navigation

solutions onto the subspace {x ∈ Rm : ‖Lx‖2 ≤ γ2}. (See

e.g., [2] for an alternative approach to impose the constraint.)

One projection p(x̂k) that does this is given by [3], [4]

p(x̂k)
def
= argmin

x

(
‖x̂k − x‖2

P
−1

k

)
s.t. ‖Lx‖2 ≤ γ2, (4)

where

‖x̂k − x‖2
P

−1

k

= (x̂k − x)T P−1
k (x̂k − x), (5)

and Pk is the covariance matrix of the joint navigation solution

x̂k. That is, the projection is the solution to an inequality

constrained weighted least squares problem.

B. The solution to the constrained least square problem

The solution to the inequality constrained weighted least

squares problem is a stationary point of the Lagrange function

(with the Lagrange multiplier λ) [5]

J(x, λ)
def
= ‖x̂k − x‖2

P
−1

k

+ λψ(x), (6)

where

ψ(x)
def
= ‖Lx‖2 − γ2. (7)

The stationary points of the Lagrange function are given by

the solutions to the normal equations

∂J(x, λ)

∂x
= 0 ↔

(
P−1

k + λLT L
)
x = P−1

k x̂k (8)

∂J(x, λ)

∂λ
= 0 ↔ ψ(x) = 0. (9)

If there is a unique solution to the constraint least squares prob-

lem in (4), then the stationary point of the Lagrange function

that corresponds to the solution to the constrained least squares

problem, is the unique stationary point for which λ > 0 [5].

Let this stationary point be denote by {x∗, λ∗}. Further, note

that if the solution is unique, then
(
P−1 + λ∗LTL

)
must have

full rank and the projection function p(x̂k) defined in (4) can

equivalently be written as

p(x̂)
eqv
= Π(λ∗) x̂k (10)

where

Π(λ)
def
=
(
P−1

k + λLTL
)−1

P−1
k , (11)

and

λ∗
def
= {λ ∈ R

+ : ψ(Π(λ) x̂k) = 0}. (12)

The function ψ(Π(λ) x̂k) is a nonlinear polynomial function in

λ, and to find its roots, one must in most cases resort to some

numerical root finding method such as the Bisection method

or Newton’s method. We have used the method described in

[3] and not experienced any convergence problems.

C. The covariance of the projected navigation state vector

The covariance P∗
k of the projected joint navigation solution

can be approximated as [4]

P∗
k = ∇pPk(∇p)

T , (13)

where ∇p is the Jacobian matrix of the projection function

p(x) with respect to x evaluated around x̂k, i.e.,

∇p
def
=

[
∂p(x)

∂[x]1

∣∣∣
x=x̂k

· · ·
∂p(x)

∂[x]m

∣∣∣
x=x̂k

]
.

Here [x]i denotes the i:th element of the vector x. To find the

Jacobian matrix, we may first note that

∂p(x)

∂[x]i
=
∂Π(λ∗)

∂[x]i
x+Π(λ∗)

∂x

∂[x]i

=
∂Π(λ∗)

∂λ∗
∂λ∗

∂[x]i
x+Π(λ∗) ei,

(14)

where ei denotes the i:th natural basis vector. The partial

derivative of Π(λ∗) with respect to λ∗ is given by

∂Π(λ∗)

∂λ∗
=

(
∂
(
P−1

k + λ∗LTL
)−1

∂λ∗

)
P−1

k

= −
(
P−1

k + λ∗LTL
)−1

(
∂
(
P−1

k + λ∗LTL
)

∂λ∗

)

·
(
P−1

k + λ∗LTL
)−1

P−1
k

= −(P−1
k + λ∗LTL)−1LTLΠ(λ∗).

Thus, we can express the Jacobian matrix ∇p as

∇p = Π(λ∗)− (P−1
k + λ∗LTL)−1LTLΠ(λ∗)x̂k∇λ

∗

= Π(λ∗)− (P−1
k + λ∗LTL)−1LTLp(x̂k)∇λ

∗,
(15)
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where ∇λ∗ denotes the Jacobian matrix of λ∗ with respect to

x evaluated around x̂k . From the implicit function theorem it

follows that the Jacobian matrix ∇λ∗ is given by

∇λ∗ = −

(
∂ψ(Π(λ) x̂k)

∂λ

∣∣∣
λ=λ∗

)−1

∇ψ, (16)

where ∇ψ is the Jacobian matrix of ψ(Π(λ∗)x) with respect

to x, evaluated around x̂k. The partial derivative and the

Jacobian matrix in (16) are

∂ψ(Π(λ) x̂k)

∂λ

∣∣∣
λ=λ∗

=
∂

∂λ

(
x̂T
k Π(λ)

TLTLΠ(λ)x̂k

)∣∣∣
λ=λ∗

= x̂T
k

(∂Π(λ)T
∂λ

∣∣∣
λ=λ∗

LTLΠ(λ∗)

+ Π(λ∗)TLTL
∂Π(λ)

∂λ

∣∣∣
λ=λ∗

)
x̂k

= 2 x̂T
kΠ(λ

∗)TLTL
∂Π(λ)

∂λ

∣∣∣
λ=λ∗

x̂k

= −2 x̂T
kΠ(λ

∗)TLTL

·
(
P−1

k + λ∗ LTL
)−1

LTLΠ(λ∗)x̂k

= −2 p(x̂k)
TLTL

(
P−1

k + λ∗ LTL
)−1

· LTL p(x̂k)
(17)

and

∇ψ = 2 x̂T
kΠ(λ

∗)TLTLΠ(λ∗)

= 2 p(x̂k)
TLTLΠ(λ∗),

(18)

respectively. Thus, the Jacobian matrix ∇λ∗ is given by

∇λ∗ =
p(x̂k)

TLTLΠ(λ∗)

p(x̂k)TLTL(P−1
k + λ∗ LTL)−1LTL p(x̂k)

(19)

Introducing zk
def
= LTL p(x̂k) and inserting (19) into (15)

yields the Jacobian matrix ∇p of the projection p(x)

∇p = Π(λ∗)−
(P−1

k + λ∗LTL)−1zkz
T
k Π(λ∗)

zTk (P
−1
k + λ∗ LTL)−1zk

=

(
Im −

(P−1
k + λ∗LTL)−1zkz

T
k

zTk (P
−1
k + λ∗ LTL)−1zk

)
Π(λ∗)

(20)

from which the covariance approximation (13) is given.

D. Handling navigation systems with attitude estimates

In the problem formulation in Section II-A it was assumed

that all navigation states of the i:th navigation system could

be represented by a vector xi
k, defined in Rni . This may cause

a problem if the state vector of the i:th navigation system also

include the attitude of the navigation platform. This since an

angle is only defined on [0, 2π) and a sequence of rotations

does not commute and can therefore not be represented by a

“proper” vector. Hence, the proposed projection method will,

not without modifications, work as intended with navigation

state vectors that includes attitude states.

The way to get around this problem is to: (a) note that the

constraint in the weighted least squares minimization, only

depends upon the position states and that the minimization

only affects all the other states via the weighting matrix

P−1
k ; and (b) to assume that the coupling between the states,

represented by the weighting matrix, is such that a change in

position only has a small effect on the attitude. This means

that before the minimization we may substitute the elements of

the state vector that represent the attitude of the platform with

zero and then do the minimization (projection). The “attitude”

elements in the output vector of the minimization will then be

the small attitude perturbations that can be used to calculate

the correct (projected) attitude states using, for example, the

method described in [6, p. 200]

III. FOOT-TO-FOOT DISTANCE INEQUALITY CONSTRAINT

ZERO-VELOCITY AIDED INERTIAL NAVIGATION

In this section, we will use the projection method de-

scribed in the previous section to formulate a Kalman filter

algorithm for fusing the information from two foot-mounted

zero-velocity-aided inertial navigation systems using an upper

bound on γ the maximum foot-to-foot distance. We will begin

by introducing the navigation equations and the state-space

model used in the filter.

A. The navigation equations and the state-space model

Let x̂k ∈ S18 be the joint navigation solution of the two

foot-mounted inertial navigation systems, and let the function

f denote the mechanized navigation equations that the inertial

navigation systems uses to compute their navigation solutions.

That, is

x̂
(i)
k = f(x̂

(i)
k−1, s̃

(i)
k , ω̃

(i)
k ) x̂

(i)
0 = {Initial Condition}. (21)

Here s̃
(i)
k ∈ R

3 and ω̃
(i)
k ∈ R

3 denote the, by the i:th system,

measured specific force and angular rate vector, respectively.

Further, let the time dynamics of the perturbations (errors)

δx
(i)
k ∈ R9 in the navigation solution of the i:th system be

described by the state-space model

δx
(i)
k = F

(i)
k δx

(i)
k−1 +G

(i)
k w

(i)
k . (22)

Here F
(i)
k and G

(i)
k denote the state transition and noise gain

matrix, respectively. The vector w
(i)
k ∈ R6 denotes the process

noise, which is assumed white and to have the covariance

matrix Q(i). Since the attitude perturbations, the attitude

estimates, and the true attitude in general has a nonlinear

dependence, the relationship between the perturbation vector

δx
(i)
k , the navigation solution x̂

(i)
k , and the true navigation state

x
(i)
k is also generally given by a nonlinear function. For the

system parameterizations we have a hand, let this function be

denoted by Γ, and defined so that x
(i)
k = Γ(x̂

(i)
k , δx

(i)
k ).

Now, if we assume that the perturbations in the two foot-

mounted inertial navigation systems are independent of each

other, then the time dynamics of the perturbations δxk ∈ R18

in the joint navigation solution can be modeled as

δxk = Fk δxk−1 +Gk wk, (23)
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where

Fk =

[
F

(1)
k 09,9

09,9 F
(2)
k

]
, Gk =

[
G

(1)
k 09,6

09,6 G
(2)
k

]
, (24)

and wk =
[
(w

(1)
k )T (w

(2)
k )T

]T
. Since, the perturbations

in the two systems are assumed independent, the covariance

matrix of the process noise wk has the structure

Q =

[
Q(1) 06,6

06,6 Q(2)

]
. (25)

B. The zero-velocity updates and the observation equation

Next, let T
(i)
k an η(i) denote the, by the i:th system’s

zero-velocity detector, calculated test statistic and detection

threshold, respectively. See [7] for different ways to calculate

the zero-velocity detection test statistics. If T
(i)
k ≤ η(i), the

detector chooses the hypothesis that the system has zero-

velocity. However, since there is nothing as a perfect detector,

the system may be subjected to some small motions even

though the detector declares the system to have zero velocity.

Let the velocity of these small motions be denoted by v
(i)
k ,

and assume that the velocity can be modeled as additive white

noise with covariance matrix R(i). Then, we can define the

following zero-velocity observation (measurement) equation

for the state-space model of the perturbations in the joint

navigation solution.

If T
(1)
k ≤ η(1) or T

(2)
k ≤ η(2), then

−Hk x̂k = Hk δxk + vk, (26)

where

Hk =





[
H 03,9

]
, T

(1)
k ≤ η(1) & T

(2)
k > η(2)[

03,9 H
]
, T

(1)
k > η(1) & T

(2)
k ≤ η(2)[

H 03,9

03,9 H

]
, T

(1)
k ≤ η(1) & T

(2)
k ≤ η(2)

,

(27)

vk =





v
(1)
k , T

(1)
k ≤ η(1) & T

(2)
k > η(2)

v
(2)
k , T

(1)
k > η(1) & T

(2)
k ≤ η(2)[

v
(1)
k

v
(2)
k

]
, T

(1)
k ≤ η(1) & T

(2)
k ≤ η(2)

, (28)

and

H =
[
03,3 I3 03,3

]
. (29)

Further, if we assume that the small motions during the zero-

velocity updates of the two systems are independent of each

other, then the covariance of vk is given by

Rk =





R(1), T
(1)
k ≤ η(1) & T

(2)
k > η(2)

R(2), T
(1)
k > η(1) & T

(2)
k ≤ η(2)[

R(1) 03,3

03,3 R(2)

]
, T

(1)
k ≤ η(1) & T

(2)
k ≤ η(2)

.

(30)

Algorithm 1 Pseudo code for the proposed Kalman filter

algorithm.

1: k ← 0, cZ ← −τZ

2: x̂k ← Process{ Joint initial navigation state }
3: Pk ← Process{ Initial covariance matrix }
4: loop

5: k ← k + 1
6: [x̂k]1:9 ← f([x̂k−1]1:9, s̃

(1)
k , ω̃

(1)
k )

7: [x̂k]10:18 ← f([x̂k−1]10:18, s̃
(2)
k , ω̃

(2)
k )

8: Pk ← Fk Pk−1 F
T
k +Gk QGT

k

9: T
(1)
k ← Process{Zero-velocity detector for system #1 }

10: T
(2)
k ← Process{Zero-velocity detector for system #2 }

11: if T
(1)
k ≤ η(1) or T

(2)
k ≤ η(2) then

12: Kk ← Pk H
T
k (Hk Pk H

T
k +Rk)

−1

13: δx̂k ← −Kk Hk x̂k

14: [x̂k]1:9 ← Γ([x̂k]1:9, [δx̂k]1:9)
15: [x̂k]10:18 ← Γ([x̂k]10:18, [δx̂k]10:18)
16: Pk ← (I18 −KkHk)Pk

17: if ‖Lx̂k‖
2 > γ2 and k − cZ > τZ then

18: x̂k ← p(x̂k)
19: Pk ← ∇pPk(∇p)

T

20: cZ ← k

21: end if

22: end if

23: end loop

C. The state constrained Kalman filter algorithm

With the navigation equations and the state-space model for

the system perturbation with zero-velocity updates defined as

in Section III-A and III-B, the pseudo code for an inequality

constrained Kalman filter algorithm that fuses the information

from two foot-mounted zero-velocity aided navigation system

is given in Algorithm 1.

The algorithm works as follows. First, the joint navigation

state vector and the covariance of the joint navigation state

vector are initialized at line 2 and 3, respectively. Then, at

line 6 and 7, the navigation state vector is updated using the

current inertial measurement unit data. After that, at line 8,

the covariance of the updated joint navigation state vector

is calculated. Thereafter, at line 9 and 10 the zero-velocity

detectors calculates their test statistics. The test statistics are

compared with the detection thresholds at line 11. If any

or both of the two test statistics are below their detection

thresholds, one or both systems are assumed to be stationary

and a zero-velocity update is done by executing line 12 to

16 of the pseudo code. That is, at line 12 the Kalman gain

is calculated, which then at line 13 is used to estimate the

perturbations in the joint navigation solution. Thereafter, at

line 14 and 15 the estimated perturbations are used to correct

the navigation solution. As a final part of the zero-velocity

update the posteriori covariance of the joint navigation solution

is calculated at line 16.

The solution to the constrained least square problem in-
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Fig. 2: Estimated trajectories from walking along a 110[m] straight
line. The black boxes indicate the location of the starting position
(0[m]), the heading reference point (10[m]), and the stop position
(110[m]).

corporates information that is not well captured by only the

mean and the covariance. Therefore, to avoid a biased estimate

and numerical problems the constraint is only applied if a

minimum number of samples τZ has elapsed since the previous

time that it was applied. Consequently, at line 17, the algorithm

checks to determine whether the navigation solution does not

fulfill the maximum foot-to-foot distance constraint and a

minimum time has elapsed since the previous time that the

constraint was applied. If this is the case, at lines 18-19, the

navigation solution is projected onto the subspace that fulfills

the constraint and the covariance of the projected estimate

is calculated. We have typically used a τZ corresponding to

approximately 1[s].

IV. EXPERIMENT AND RESULTS

To test the proposed algorithm, the following experiment

was conducted. A user, equipped with one OpenShoe nav-

igation system on each foot, walked 110 meters on level

ground along a straight line at a normal gait speed (approx. 5

km/h). Refer to www.openshoe.org or [8] for details about the

OpenShoe navigation system. Twenty such trajectories with 4

different OpenShoe units (different IMUs) were recorded. To

get the same initial and final positions and a heading reference,

plates with imprints of the shoes were positioned at 0[m],

10[m], and 110[m]. The initial heading was set such that

the estimated position at the 10[m] plate, without using the

constraint was, on the x-axis (Adjustments were made for the

spacing between the foots.).

The inertial measurement unit data collected from the two

navigation systems was then processed with Algorithm 1. The

processing was done with the maximum foot-to-foot distance

set to infinity (γ = ∞[m]), giving two uncoupled systems,

and set to 1 meter (γ = 1[m]), giving the constrained system.

The estimated trajectories are shown in Fig. 2. Corresponding

scatter plots with 1σ confidence ellipsoids of the final horizon-

tal position estimates are shown in Fig. 3. Applying the range

constraints can be seen to have significantly reduced the mean

error and covariance of the final position estimates. As noted

in [9], there are symmetric systematic modeling errors which

will cancel out. Therefore, two foot-mounted zero-velocity
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Fig. 3: Scatter plot of end position of the two systems with and
without the range constraint. 1σ confidence ellipsoids are shown in
black. It is clearly seen that the mean error and covariance of the final
position estimates are significantly reduced by applying the range
constraint.

aided inertial navigation systems are believed to be a favorable

application and the experiment shows that constraints can be

used to fuse the information from two navigation systems.

V. CONCLUSIONS

We have suggested a method to fuse the information

from two navigation system using an upper bound on their

spatial separation. The solution is based on a constrained

least square problem formulation. The use of the method has

been demonstrated on the fusion of information from two

foot-mounted zero-velocity update aided inertial navigation

systems. In this setup, the use of range constraint has been

shown to significantly improve the navigation performance.
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