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Basic idea behind foot-mounted
Inertial navigation

1. Mount (inertial) sensors in the
sole of the shoes of a user

2. Measure the length and
direction of the steps the users
takes

3. Calculate the change In
position via dead-reckoning.
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Example: Output from a foot-
mounted inertial navigation system
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Pros and cons of foot-mounted inertial
navigation

* Pros
- Does not depend on any preinstalled infrastructure.
- Can not be disturbed.
- No motion constraints™.

- Cons
- Initial position and heading most be known.
- The position and heading error grows with time.

* We assume that the foot becomes stationary on a regular basis
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Notation
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Description Notation
Discrete time index k
Sampling period T

Scalar a

Vector (matrix) a(A)
Identity matrix I

Gravity vector g

Natural basis vector ¢ ey

Transpose

Quantity expressed in coord. system j
¢:th component of a vector

Rotation matrix

Cross product

Cross product matrix

Perturbation

Estimated quantity
Measured quantity

()"
(-)?

j:{eanabai}
a=a-+da
b=b+ b




Coordinate systems and rotations
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Earth rotation 4
.

Vernal
equinox

Reference
meridian

Body coordinate system and the three Euler angles.

. . . Earth centered inertial, earth centered earth fixed,
Orientation re presentation and geographic coordinate system.

e Euler angles (roll, pitch, yaw) 6
e Roatation matrix R?, a" = Rya’

e Quaternion vector q
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Body (or platform) coordinate system

Minimum requirements

e Sampling rate 100 Hz
» Accelerometer dynamic range +15g
* Gyroscope dynamic range +1200° /s




The accelerometer and its output (1)

2 0 -2

Stationary accelerometer.

2 0 -2

Accelerometer accelerating to the
right, and with the sensitivity axis
orthogonal to the gravity field.
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Accelerometer stationary on the earth and with
the sensitivity axis aligned with the gravity
field.




The accelerometer and its output (2)

= The Inertial and gravitational acceleration are
Indistinguishable to a accelerometer.

= The output of an accelerometer is called specific force,
and includes both the inertial acceleration and the
gravity acceleration.

»To calculate the inertial acceleration from the specific
force output of an IMU we most know the IMUs
orientation w.r.t. the geographic coordinate system.




Inertial navigation system (INS)
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The navigation equations

For a foot-mounted INS using low-cost sensors the following navigation equa-
tions can be used.

x(k) = f (x(k —1),s"(k),w’(k)) x(0) = {Initial Condition}

where

"(k) =v"(k—1) + T (Ry(a(k))s’ (k) — g")

¥
| ak) = (cos(BLy By -2 sin( Zle Bl k) ) (k- 1)
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Error propagation
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Error state space model

The error in the foot-mounted INS can be modeled as

ox(k) = F(k)ox(k —1) + G(k)w(k)
where
Sx(k) = [ (Gp" (k)T @V ()T (e(k)” ]
I T -0 0
F(’“):{O I T.s"(k)]« | G(k)=| Rpk) 0O
oo 0 R

w (k) - Additive white noise with covariance matrix Q

Note that x(k) = I'(x(k), ox(k)), where T :

p"(k) =p"(k) + op" (k)
vi(k) = v (k) + ov™ (k)
q(k) = hy ((I+ [e(k)]<)R

n
b

(a(k)))
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Pseudo observations and motion constraints




Pros

Simple filter structure.

cons

It is difficult to model the motion dynamics in the KF framework.
High computational load due to the high update rate of the INS.




Complementary filtering (feed-
forward)

v (k) .
v(k) +e(k) g ov(k)+ e(k) { gggg ]
+ oa(k)

Pros

» The KF estimates the navigation state errors, which can be better
modeled in the KF framework.

» The KF needs only to be updated at the sample rate of the velocity
Sensor.

cons

* Numerical problems with low-cost INS.
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Pros

The KF estimates the navigation state errors, which can be better
modeled in the KF framework.
The KF needs only to be updated at the sample rate of the velocity

Sensor.

cons

If something goes wrong in the error estimation, the navigation
solution can be destroyed for all time.




Zero-velocity updates
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The system is — 3
stationary! ov(k) +e(k) = —v(k) + e(k)

The observation equations for the error state space model in a zero-velocity
alded INS can be written as

y(k) = H(k) 0x(k) — e(k)
where
y(k) = —H(k)X(k)
| H System is stationary
H(k) = { 039, Otherwise
H=[ 0335 —I3 033 |

e(k) is additive white noise with covariance matrix R




The zero-velocity aided INS Kalman
filter structure.




Pseudo code for the KF based zero-
velocity aided INS

P(0) « Process{Initial state covariance matlm

x(0) <— Process{Initial navigation state}
loop
X(k)  f(x(k = 1),5(k), w(k))
P(k) < F(k)P(k —1)FT (k) + G(k)QGT (k)
T(k) < Process{Zcro-velocity detector}
if T'(k) <~ then
y(k) <= —Hx(F)
K« PkH" HP(K)H" +R)™!
0x(k) « Ky (k)
x(k) «+ I'(x(k), 6x(k))
P(k) <« (I-KH)P(k)
k< k+1

end if
\ end loop /
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il  Zero-velocity detection
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*Force sensitive resistors as a detector
«Zero-velocity detection using IMU data
*The SHOE detector
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Force sensitive resistors (FSR) as
zero-velocity detector

Drawbacks

e Sensitive to mechanical fatigue

o Threshold is weight dependent

e Only works when pressure is applied
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When the system is
stationary, then

* The specific force measured by the
accelerometers is equal to the
gravitation acceleration, whose
magnitude is known.

* The attitude of the IMU is constant,
i.e., the angular rate experienced
by the IMU is zero.

Zero-velocity detection using IMU
data

Decision

The SHOE detector

T(k) =+ 7, (LR @) -
(k) Wzgzk_% gg”S() g

where
k Ww—1

(k) = & X0, w80

s(k)
Is(R)l
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Position error as a function of the
detector settings.

)

Travelled distance

RMS position error

10 Tog, (100-

Position accuracy versus detection threshold for the SHOE detector at 5

km/h.
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Position accuracy versus detection threshold for the SHOE detector at 7 km/h.

5 ! 1 1 1
O .
_5 L.
—#— W = 35 samples (140 ms)
—v— W =45 samples (180 ms)
f ; = [ xternal Detector
-10 ' .
35 40 45 50 55 60

10 log,4(7)

Conclusions

e SNR is high — Keep the window size W small to get a fast detector.

e The “optimal” threshold ~ varies little with the gait speed.




The OpenShoe project

* Introduction
 Hardware

« Software

« Demo
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OpenShoe — Foot-mounted INS for
Every Foot

WWw.openshoe.org

= OpenShoe is an open source embedded foot-mounted
INS implementation including both hardware and
software design.




Hardware
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IMU

Embedded system




Software
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i =) C code running on the microcontroller

- =) Matlab scripts
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