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Abstract—Inertial sensor arrays present the possibility of
improved and extended sensing capabilities as compared to
customary inertial sensor setups. Inertial sensor arrays have
been studied since the 1960s and have recently received a
renewed interest, mainly thanks to the ubiquitous micro-electro-
mechanical (MEMS) inertial sensors. However, the number of
variants and features of inertial sensor arrays and their disparate
applications makes the literature spread out. Therefore, in this
paper we provide a brief summary and literature review on the
topic of inertial sensor arrays. Publications are categorized and
presented in a structured way; references to +300 publications
are provide. Finally, an outlook on the main research challenges
and opportunities related to inertial sensor arrays is given.

I. INTRODUCTION

An inertial sensor arrays is the concept of combining
redundant accelerometer and gyroscope sensing elements. The
interest in such arrays comes from their ability to provide
properties and capabilities not attainable from conventional,
non-redundant sensor assemblies, i.e. inertial measurement
units (IMUs) made out of three accelerometers and three
gyroscopes. In short, the attainable capabilities are:

• Higher accuracy
• Higher reliability and uncertainties estimation
• Higher dynamic measurement range
• Estimation of angular motion from accelerometer data
• Direct estimation of angular acceleration

Owing to these desirable properties and capabilities, inertial
sensor arrays have been an active research topic since the
1960s and the research literature consists of some +300 publi-
cations and +10 PhD theses; publications that are covering
different aspects related to the design and development of
inertial sensor arrays, such as measurement fusion, calibration
and geometry optimization. The application areas range from
inertial navigation for aerospace to vehicle crash test systems.
The disparate topics of the publications and varying applica-
tion areas mean that the publications are dispersed out over a
wide range of research fields and many results are reproduced
over and over again. The aim of this paper is therefore to
provide a brief review of the literature and summarize the
key findings. It is the authors’ hope that this will provide the
interested reader with an overview of the topic and inspire
further research in an area where the rapid development of
sensor and computational technologies provides many new
opportunities.

Fault detection and identification is an important capability
of inertial sensor arrays, but rather separated from the other
capabilities. Therefore, we have chosen to omit it from this
literature review. The interested reader is referred to [26],
[317], [134] and the references therein. The review has further
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Fig. 1. An illustration of the forces sensed by the accelerometers in an inertial
sensor array, overlaid on a picture of an inertial sensor array constructed from
32 IMUs [270]. The specific force sensed by the i:th accelerometer triad is
the sum of the specific force at the origin of the array coordinate frame, the
centrifugal force, and the Euler force.

been limited to English literature. The references are numbered
in alphabetical order.

II. INERTIAL SENSOR ARRAYS

The properties and capabilities of an inertial array are best
understood with a basic array signal model. For simplicity,
assume an array consisting of Ns accelerometer and Nω

gyroscope triads. Further, assume that the sensors are identical,
their sensitivity axes aligned, and that they have an additive
measurement error. The measurements of the i:th accelerom-
eter triad and j:th gyroscope triad can then be modelled as

y(i)
s = s+ ω × (ω × r(i))︸ ︷︷ ︸

Centrifugal force

+ ω̇ × r(i)
)︸ ︷︷ ︸

Euler force

+n(i)
s (1)

and
y(j)
ω = ω + n(j)

ω (2)

respectively. Here s is the specific force at the origin of
the array coordinate system and r(i) is the location of the
i:th accelerometer triad. ω and ω̇ are the array’s angular
velocity and angular acceleration, respectively. n(i)

s and n
(j)
ω

are the measurement errors of the accelerometer triads and
gyroscope triads, respectively. See Fig. 1. for an illustration of
the accelerometer measurement components and the geometry.
From the measurement models it can be observed that: (i)
the accelerometers provide information both about the linear
motion and the rotational motion (angular velocity and angular
acceleration), whereas the gyroscopes only provide rotation
information; (ii) the rotation information gained from the
accelerometers depends on the geometry and scale of the array;
and (iii) there is a sign ambiguity in the angular velocity
information provided by the accelerometers, i.e., ω × ω =
(−ω)× (−ω).
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A. Capabilities

From the listed observations it follows that with an array of
inertial sensors the following capabilities can be obtained1:
• Higher accuracy: By simply averaging the accelerometer
and gyroscope measurements the specific force and angular
velocity error covariance can be reduced by a factor Ns and
Nω , respectively2. However, since the accelerometers also
provide rotational information, the angular velocity estimation
accuracy can be improved further by fusing the information
from both the accelerometers and gyroscopes. The additional
information3 (accuracy) gained is proportional to the square of
the angular speed. Refer to [273] for details about the informa-
tion gain and a lower bound for the estimation accuracy. Fur-
ther, with asynchronous sensors an effective higher sampling
rate than that of individual sensors can be achieved [270].
• Extended sensing: The possibility of extracting rotational
information from the accelerometers implies that it is possible
to construct an array of only accelerometers and still be able
to estimate both the linear and the rotational motions. Further,
in the case of an array consisting of both accelerometers
and gyroscopes, this possibility also implies that the angular
velocity can be estimated, even though the gyroscopes are
saturated, i.e., the angular velocity dynamic range is increased
[273]. Moreover, since the accelerometers also provide in-
formation regarding the angular acceleration, this can be
directly estimated, and the noise amplifying differentiation of
gyroscope measurements avoided [258]. Finally, in principle
(though not seen from the basic signal model), accelerometer
arrays can separate gravity from platform acceleration [203],
[334]. However, the required hardware is not and will not be
practical for this type of navigation in the near future.
• Uncertainty assessment: Since the same quantities are mea-
sured by multiple sensors in the array, the consistency between
the measurements can be checked and used for sensor fault
detection and isolation, increasing the reliability of the inertial
sensor array [26], [317]. Further, the redundant measurements
can also be used to estimate the uncertainty of the same,
and by introducing a (low parameterized) model for the
measurement uncertainties, the measurement fusion algorithm
can be designed to adapt to the error characteristics of the
sensors [5], [300]. The uncertainty in the estimated linear and
angular motion parameters can also be calculated.

B. Fundamental requirements and limitations

To be able to achieve the listed capabilities there are
certain requirements the array must fulfill, and there are also
fundamental limits to what can be achieved with certain types
of arrays. These requirements and limitations are:
• Geometry requirements: To be able extract 3 degrees-of-
freedom rotational motion information from the accelerom-
eters in the array, it is necessary that the array holds at

1To simplify the discussion we will assume that the origin of the array is
defined so that

∑
r(i) = 0 and that the triads are independent.

2The assumption that
∑

r(i) = 0 implies that the effects of the centrifugal
and the Euler force cancel out when averaging the measurements.

3Information in the terms of Fisher information.
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Fig. 2. Publications per year and the cumulative number of publications in
the field of inertial sensor arrays from 1962 to the spring of 2016.

least 6 (single axis) accelerometers whose locations span a 3
dimensional space or or at least 9 (single axis) accelerometers
whose locations span a 2 dimensional space [258], [273]. The
rotational motion information gained is proportional to the
square of the scale of the distance between the accelerometers
[273] and, depending on the number of sensors and their
geometry, the complexity of calculating the rotational motion
information varies (see Sec. III-B for details.).
• Identifiability and accuracy limitations: In arrays made
out of only accelerometers, the sign of the angular velocity
cannot be determined from the measurements taken at a
single time instant since the Coriolis force is quadratic in the
angular velocity. Further, even if sign of the angular velocity
where known, the variance of any unbiased (accelerometer
measurement based) estimator of the angular velocity tends to
infinity as the angular velocity goes towards zero [273].

C. Practical problems

Beyond the fundamental limitations of the inertial sensor
arrays, there are several practical problems related to the
design and use of the arrays. For reliable rotational motion
information to be extractable from accelerometers, their place-
ment within the array must be known with very high degree
of precision4. Further, the mutual orientation of the sensitivity
axes of the sensors must also be well known. Calibration
of these parameters along with standard parameters such as
sensor biases and scale factor errors are essential to obtain the
full capability of an inertial sensor array. Finally, the sampling
of the sensors needs to be well (time) synchronized.

III. LITERATURE REVIEW

There are some +300 publications in the field of inertial
sensor arrays, excluding work on fault detection. Inertial
sensor arrays, and special cases thereof, go under several dif-
ferent names in the literature, such as gyro-free/non-gyro/all-
accelerometer/accelerometer-only/(6-/9-/12-) axis accelerome-
ter IMU/INS, multi-/redundant IMU systems, gyroscope array,
accelerometer array. The temporal distribution of the publica-
tions can be seen in Fig. 2. Of note is the strong increase in
publications around the year 2000 which coincides with the
appearance of MEMS-accelerometers on the market. There is

4To the first order the angular velocity error is proportional to angular speed
times the relative position error of the sensor.



a similar trend, not shown in the graph, for an emphasis from
around year 2010 on systems based on complete IMUs, which
coincides with an increasing availability of complete MEMS-
IMUs. In addition to the categorized literature, 10 PhD theses
have been published on inertial sensor arrays [3], [17], [37],
[53], [88], [127], [212], [215], [238], [325]. Further, 2 old
PhD theses have also been cited in the literature [113], [262],
but their titles are rather unspecific and we have not been
able to verify their content. We also wish to point out some
seemingly relavant early work which we have not been able
to access [63], [75], [105], [106], [140], [192].

The publications are categorized in Tables I and II based
on their objectives and their applications areas, as described
in the following subsections. A few publications also deal with
attributes of inertial sensor arrays which fall outside the listed
categories [14], [32], [42], [62], [294].

A. Objectives

The objectives of the publications in the literature are
categorized as follows:
• Measurement fusion: Publications dealing with how to
process and combine the inertial measurements (and possible
other information) to attain estimates of s, ω and ω̇ or higher
level information such as attitude or position.
• Calibration and error analysis: Publications dealing with
how to model, estimate and compensate for array imperfec-
tions and how errors affect the system.
• Sensor constellation optimization: Publications dealing with
the constellation geometry and number of sensors to be used.
• Experimental platforms: Publications including experimental
platforms and evaluations of inertial sensor arrays.

B. Array types

The array types in the literature are categorized as follows:
• Accelerometers-only arrays, with subcategories:

- ≤8 axis: The minimum number of accelerometers needed
to extract 3 degrees-of-freedom rotational information is
6. However, with 9 unknowns (s, ω and ω̇) and less
than 9 measurements, one has to exploit the temporal
dependence between ω and ω̇ to attain estimates for the
same [309]. This creates an additional integration for
the inertial mechanization, increasing the error growth
rate [191], [232]. The 6 sensor configuration requires a
non-coplanar array geometry.

- 9–11 axis: With 9 or more accelerometers it is possible to
estimate s, ω (with sign ambiguity) and ω̇ directly. This
eliminates the hard dependence on the extra integration,
except for resolving the sign of ω. The 9 sensor config-
uration enables the use of a coplanar array geometry.

- ≥12 axis: With 12 or more accelerometers, a linear
relaxation can be introduced, enabling a least-squares
framework to be used for estimating s, ω (with sign
ambiguity) and ω̇. This is convenient, but requires a non-
coplanar array and gives a suboptimal performance [273].
Not all methods dealing with 12 or more accelerometers

exploit this relaxation, see e.g. [39], [43], [273], but for
simplicity they are all classified in the same category.

• Accelerometers and gyroscopes: In arrays made out of both
accelerometers and gyroscopes the number and the configura-
tion of accelerometers is of less significance. The sign ambi-
guity of ω disappears but the challenge is in how to combine
the angular motion information from the accelerometers and
the gyroscopes measurements.

The listed categories make up the vast majority of the
presented systems. However, there also exist publications on
several other array setups. Gyroscopes only arrays, which
only have the capability to quantify and mitigate the effect
of the measurement errors [19], [20], [22], [45], [46], [71],
[104], [119], [154], [181], [189], [265], [314], [315], [323].
Arrays made out of identical accelerometers (and gyroscopes)
integrated on a chip level, in which case the distances between
the accelerometers are negligible and one may only quan-
tify and mitigate the effect of the measurement errors [25],
[163], [199], [330]. Arrays constructed out of accelerometers
with different dynamic range, but with insignificant spatial
separation. This enables an increased specific force dynamic
measurement range and measurement accuracy, but no other
capabilities [24], [143], [200], [256]. Distributed (semi-rigid)
inertial networks [9], [157], [162]. There also exist publi-
cations on dynamic accelerometer and other more complex
inertial sensors [11], [44], [47], [66], [67], [74], [95], [100],
[145], [168], [197], [205], [207], [219], [279].

C. Application areas

The actual/suggested applications are classified as follows:
• Biomechanics: This is the most common application area for
accelerometer-only arrays, which are especially used for crash
and impact tests for vehicle safety and sport medicine. In these
fields, short highly dynamic motions and forces resulting in
linear and angular accelerations are studied, which is suitably
done with accelerometer arrays. For a general review on so
called accelerometry, see [110].
• Navigation: This is the most common application for com-
bined accelerometer and gyroscope arrays. Previously, general
navigation with arrays of only accelerometers has been sug-
gested, often motivated by the high cost of gyroscopes. But due
to the poor performance of accelerometer-only arrays at low
angular velocities and the availability of low-cost gyroscopes,
these type of systems are today only motivated in certain
niche-applications.
• Ballistic platform guidance: This may be viewed as naviga-
tion with very special requirements. Munition is often subject
to very high acceleration making usage of gyroscopes difficult.
However, the motion is highly dynamic, short and constrained,
facilitating the usage of accelerometer-only systems.
• Platform control: Platform control and especially stabiliza-
tion benefits from the capability to directly estimate angular
acceleration. This enables acceleration mode control, which
can significantly increase the servo bandwidth, as compared
to angular velocity mode control.



• Other: Application areas such as gravity gradiometry, vibra-
tion sensing, and gesture detection.

IV. KEY REFERENCES

The field exhibits a large degree of redundancy, also in the
publications. Many results have been reproduced over and over
again. However, the key results and a good overview of the
field can be attained from a small number of key references
which we would like to point out:
• A. Schuler et al. (1967) [263], an early account of the theory
for handling 6 and 9 axis accelerometer-only arrays.
• A. Padgaonkar et al. (1975) [231], an account of the theory
and experimental data for a 9 axis accelerometer-only array.
• J. Angeles et al. (1987) [13], contains the first account of
the linear relaxation enabling a least squares solution for s, ω
and ω̇ for a general (non-coplanar) accelerometers array.
• P. Cardou et al. (2008) [39], an account of methods to solve
the nonlinear estimation for an accelerometer-only array.
• M. Pachter et al. (2013) [230], inertial navigation, mecha-
nization, and error analysis of accelerometer-only arrays.
• I. Skog et al. (2016) [273], estimation-theoretical formulation
of inertial arrays containing accelerometers and gyroscopes.

V. OUTLOOK

Motion sensing is a fundamental property and inertial
sensor cost, size, power consumption, and performance are
steadily improving. Inertial sensors are already present in large
numbers, in everything from gadgets to industrial systems,
and will be present in even larger numbers in more and
more systems. Already today, inertial sensors are packaged
with microcontrollers; high-end tactical and navigation grade
sensors are reaching price levels where new applications are
within reach; and novel high-end technologies such as atom
interferometry-based accelerometers are emerging. This will
create numerous opportunities for applying inertial sensor
array techniques. However, still lacking are solid and mature
methods such as:

• Combined adaptive statistical tools for estimation, fault-
detection, and uncertainty assessment.

• Robust automatic online array calibration tools including
time synchronization of different inertial signals.

• Methods for combining asynchronous inertial sensors
with different dynamic range, bandwidth, error/stability
characteristics and sampling frequency.

These are among the current and future challenges for re-
searchers involved in the field of inertial sensor arrays and a
prerequisite for capitalizing upon the new opportunities that
comes with new inertial sensor hardware and systems.
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TABLE I
PUBLICATION SORTED BY ARRAY TYPE AND CONTENT. PAPERS MAY BE LISTED AT MULTIPLE ENTRIES IF COVERING MULTIPLE OBJECTIVES.

REFERENCES ARE NUMBERED AND LISTED IN ALPHABETICAL ORDER.
Array type

Content Accelerometers only Accelerometers & gyroscopes
Measurement fusion ≤ 8 axis 9-11 axis ≥ 12 axis

[1], [12], [18], [49], [51],
[58], [73], [84], [93], [96],
[103], [135], [161], [164],
[172], [173], [174], [175],
[178], [179], [209], [210],
[214], [217], [225], [227],
[228], [231], [234], [236],
[263], [277], [280], [282],
[285], [283], [284], [302],
[304], [311], [320], [324]

[2], [4], [5], [6], [18], [34],
[36], [38], [51], [56], [64],
[65], [76], [78], [79], [80],
[81], [96], [103], [132],
[133], [141], [142], [144],
[155], [156], [159], [164],
[172], [173], [176], [180],
[182], [183], [190], [201],
[206], [213], [218], [223],
[224], [231], [237], [250],
[251], [258], [263], [266],
[269], [281], [296], [297],
[298], [299], [303], [311],
[331], [332]

[2], [7], [13], [29], [34],
[35], [38], [39], [36], [40],
[41], [43], [50], [57], [61],
[64], [65], [70], [85], [86],
[87], [92], [111], [112],
[126], [136], [138], [139],
[158], [166], [171], [172],
[173], [187], [188], [194],
[196], [202], [220], [230],
[235], [239], [241], [242],
[243], [246], [252], [259],
[260], [261], [289], [291],
[311], [313], [319], [328],
[333], [334]

[15], [16], [18], [28], [30], [48],
[60], [68], [89], [90], [91], [98],
[99], [107], [108], [109], [114],
[116], [117], [118], [120],
[121], [122], [123], [125],
[148], [159], [160], [170],
[184], [185], [186], [198],
[200], [204], [221], [226],
[233], [247], [253], [271],
[278], [286], [291], [293],
[300], [305], [308], [312],
[316], [322], [326], [327]

Calibration and error
analysis

[1], [33], [70], [77], [82], [126], [131], [141], [142], [146], [147], [165], [196], [217], [222],
[228], [237], [239], [240], [242], [248], [257], [259], [261], [267], [284], [285], [296], [306],
[324]

[8], [10], [27], [54], [55], [72],
[137], [149], [167], [249], [329]

Optimization of sen-
sor constellation

[52], [101], [129], [130], [139], [175], [188], [196], [211], [252], [260], [258], [285], [307],
[309], [310], [318], [328]

[125], [134], [150], [151],
[152], [244], [245], [253],
[268], [274], [276]

Experimental
platform

[1], [5], [6], [29], [31], [33], [35], [43], [52], [56], [73], [76], [77], [80], [82], [102], [111],
[138], [139], [146], [156], [158], [164], [166], [169], [174], [175], [194], [196], [201], [202],
[209], [213], [214], [217], [218], [223], [227], [228], [231], [243], [246], [251], [258], [261],
[264], [277], [282], [292], [302], [319], [321], [295]

[15], [16], [48], [55], [59], [61],
[90], [91], [98], [99], [107],
[108], [109], [114], [115],
[120], [124], [160], [176],
[186], [198], [200], [204],
[221], [226], [229], [233],
[242], [270], [272], [278],
[286], [288], [291], [301],
[300]

TABLE II
PUBLICATION SORTED BY ARRAY TYPE AND INTENDED APPLICATION AREA. PAPERS NOT STATING AN EXPLICIT APPLICATION AREA ARE NOT LISTED.

REFERENCES ARE NUMBERED AND LISTED IN ALPHABETICAL ORDER.
Array type

Application area Accelerometers only Accelerometers & gyroscopes
Biomechanical/crash tests [21], [23], [31], [34], [35], [56], [69], [83], [97], [102],

[103], [111], [128], [135], [136], [141], [156], [158],
[159], [196], [202], [213], [214], [223], [231], [255],
[264], [275], [281], [295], [321]

[24], [30], [159], [160], [226], [301]

Navigation [29], [38], [70], [79], [81], [87], [92], [178], [180], [183],
[220], [230], [236], [246], [251], [280], [285], [289],
[308], [331]

[15], [16], [59], [68], [107], [108], [109], [124], [134],
[198], [221], [229], [253], [254], [271], [276], [278],
[286], [287], [327]

Ballistic platform guidance [58], [64], [65], [66], [101], [112], [132], [133], [176],
[195], [208], [225], [234]

[193], [312]

Platform stabilization and control [5], [6], [4], [174], [177] [98], [99], [291], [290]
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